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The thermal Casimir force
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The Lifshitz formula ¢ 15% Alamos

T>0
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Reflection matrices (Fresnel formulas for isotropic media):
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Going to imaginary frequencies . io:aamos

The function coth(Aw/2kpT) has poles on the Im o =Re &
imaginary frequency axis at
| 2k T AN
Wm =— Zé-’m ) gm = m h
h
After Wick rotation: & |

r >, [ dk, R, (i€,) - Ro(i€,, e 2Ks(im)d
A B n;)/ (27T)2 3(25 ) 1'1 _ R, (me) ) R2(i€m)e—2K3(z§m)d

Kramers-Kronig (causality) relations:

o 2 [ we’(w) o 2 [ wu (w)
e(zf)—l—l—%/o w2+£2dw ,u(zf)—l—l—;/o w2+€2dw

Casimir physics is a broad-band frequency phenomenon
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The thermal “problem . Lot Alamos
M. Bostrom and B.E. Sernelius,
P Phys. Rev. Lett. 84 (2000) 4757
np =
i PCas|
Big effect of 20 “plasma model”
> Big effect o 10
dissipation at 5 | y=0, I'= 30\0K
large distances | \
(factor 2) '
1t
0 : “Drude
Drawn here for O \ model” |
parameters of Gold 02 | v =0.004 - wp , T'= 300K
Ap = 136 nm R O U U OO
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Drude and plasma models (o
o UOVEE TR /S TR e/ + k] -\ Jeliog/e £k
€(i€)\[€2/¢* + IF + | [e(i€)€2/* + k7 \/52/c2 4 eli€)E2 /2 + K
Drude model Plasma model
ep(i€) = 1+ g(gw% - ep(if) =1+ gz

At large separations, where thermal corrections are important, only the
low-frequency behavior of the permittivity matters

ep x 1/& ep ox 1/€2
lim riM — 1 limrp™” =1
El—rf(l)TD £—0 P
lim rLE — hmr 0
50 D £—0 4
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How to measure this?
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Torsional pendulum

Experiment by Lamoreaux group (Yale)

@ Sphere-plane geometry:

t=—:15:1 ‘em

@ Torsional pendulum (modern Cavendish-like)

Piezoelectric Transducer

9 Feedback control > 1 with Strain Gauge
Computer
. M XYZ Pivot/Suspension Point

Positioner

(pendulum grounded
through torsion wire)

DC BiasVoltage
(from Computer DAC)

Capacitance Bridge Force (Voltage)
and PID DC Feedback =" 91c¢ | ¥ OTld&¢

to Computer ADC
Network W S ra
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Typical Casimir measurement . ioatmos

Sp1p(d, Va) = Sae(d — 00) + Sa(d, V) + S,(d)

Z 4 AN

‘ ¢ ¢ electrostatic signal in residual signal due to
9rce|— rele componen'F © response to an applied distance-dependent
Signal at farge separations external voltage forces, e.g. Casimir

The electrostatic signal between the spherical lens and the plate, in PFA (d < R)is

Sa(d,Vy) = meg R(V, — Vm)Q/Bd I&} force-voltage conversion factor

This signal is minimized (S, = 0) when V, = V,;, , and the electrostatic minimizing
potential V,,, is then defined to be the contact potential between the plates.
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“Parabola’” measurements

Calibration routine -0.29 T 1
s
A range of plate voltages V/, is applied, and ~ 0205\ 3 17 i i
. . = \ /
at a given nominal absolute distance the 2 OEL T O O B
response is fitted to a parabola A s v &/ =
- (a) \ ¥ }
-0.305 L2 l

-0.2  -0.1 0 0.1 0.2
Applied Potential (V)

Spin(d, Va) = So + k(Vy — V)2

Fitting parameters

e k’(d) —>» voltage-force calibration factor + absolute distance
Vin = Vin(d) —> distance-dependent minimizing potential

So = Sp(d) —> force residuals: electrostatic + Casimir + non-Newtonian gravity + ....
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Curvature parameter k(d)

From the curvature of the different parabolas one obtains k(d)

60 —
R/f ‘]
Y3 o 3
k(d) = — > 40f 1]
d s |
S i
= (b)
™ Force-voltage calibration factor o Mj
() > booio & |
B 7 036 039 042 045
f= (130 0.00) 2610 NN Relative Distance (mm)

™ Sphere-plane absolute distance

= dO — drel
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Minimizing potential

n
)
» Los Alamos

Our Ge data shows a distance-dependent
minimizing potential, of the order of 6 mV

over 100 um.

‘V — m(d)‘

v

Minimizin

Q@ However, in some other experiments, the minimizing potential is

distance-independent

17.0

A L z " .
-t" - " - g | ] ..- .
r 71{‘;5. oy
2‘ F;. (L “
' g . WS -
* » ’.r-'- -..- :
:'?\'} ot e
20b0 3000 4000
Z___ (nm)
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Force residuals in Ge experiment . Lo atamos

Bl |

* Each point represents the minima
of asingle parabola measurements

Residuals from Coulomb force .
] (an average of 5 data points).
Obta|ned from the Value Of the * The PID signals are monitored

. - before and after each sweep and
PID Slgnal at the minima Of apphed a linear dnft correction (less
each parabola,

Force (N)

than 10 pN drifts over 100 um

So(d) — Fy(d)

10° 10° 10"
Distance (m)

In our experiment, these force residuals are too large to be explained just
by the Casimir-Lifshitz force between the Ge plates.

In fact, the experimental data shows a 1/d force residual at distances
d > 5um, where the Casimir force should be negligible.

What is the origin of the varying minimizing potential?

What is the origin of the additional force residual?
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Electrostatic patches 15 Ao
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Metals are NOT equipotentials - LosAiamos

@ Despite what we have learned in freshman physics!

(100) 5.47 eV
(110) 5.37 eV
(1) 531 eV

@ Different crystal faces have different work functions

@ Dirt: oxides, surface adsorbates strongly affect work function and
surface potential by creating dipoles on the surface.

I' N

Resulting potential variation /"\ +\ 1\
. —
across a surface: /\7 /\_

x
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Surface potentials & V. (d) Lok Alamos

Electrostatic force (in PFA, R > d): V(r, o)
: 27 R & r \2 Vi
B €0 (V(r,e) + W) 0
1.Vy) = — 1o A N ARy ) 7 sl o 2
¥{e, Vo) 2 Jo o ./(J £ (d +r2/2R)? d a(r) ity 21
|
7

Minimized force at a fixed distance determines
the minimizing potential v, (q)

A%

27 R r & ae

/ ! / iy (1) + Vm

= ap rar 0

Vo=Vm JO J0 ((l B Rk A 2R .)-

= V. = Vu(d)
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A toy model . Los Alamos

A toy model illustrating the mechanism S —s

: el R — T —
for the generation of V,,,(d) and F5,_(d) ld A L E”u

G c ==
, T =
Force on lower plate: T T e

g | S W r \2
F (‘(/.‘n} = 3('_,‘(-,“ ;( ,,ll‘“ ! ‘,.)" Cl s —60A/d2
2
( Vois varied, V.. a fixed property of the plates) Cl,> = —€0A/(d + A)

When force is minimized, one gets a varying minimizing potential and a varying
electrostatic residual force.

OF (d, Vi : C, Ve , d*
(_‘l(—'i = () > ‘“‘_ [(1] — - b 7 = ‘(. - v —
Vo Vo=V, Ca+Cy d? + (d + A)?

c0A V2(d)[d? ( A)?] 1
FoL(d) = F(d,Vp =Va(d)) = 22 Y& +@d+A)] o — v A d
2 d4 d4

In reality, measurements can determine V,,,(d) up to an overall constant: V,,,(d) — V,,.(d) + V3
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Electrostatic force residual . Los Alamos

Sphere-plane case: C,(d) = —2weoR/d

Dividing the sphere into infinitesimal areas, each with a random potential, and integrating
over the surface to get the net residual force (as in PFA), we get

Fel [Vm (d) T VI]Q
d

res

(d) = TeoR

Important message from this analysis:

M Minima of parabolas DO NOT nullify all possible
electrostatic forces between plates!
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Modeling patches - Los Alamos

The patch effect is a possible systematic limitation to Casimir force
measurements

Plane-plane geometry:

b
VA= mll = s,
d 1 2X g BBV op UBT
Ay . — ;———~._:———“ = Q D
V2V($} y’z) T 0 \ 1 = ) ") Z ([:2 23
. ‘ K : , , .
V(z — 0) — Vl(:l:,y) Vi(z.y) = / {2,_')2\ 1.k cos(kzx) cos(ky,y) [idem for Va(z,y)]
- | d*k cos(k,x) cos(k,y) Electrostatic energy:
Viz,y,2z) = / —
J (2m)* sinh(~d)
e : 2 P 2 s i 3 2
< [€7* (Vo — Vixke™ ) + 77 (V] 1 e7% — Vax)] pp(d) 9 /d |VV|

Friday, March 9, 12




A
Random patches - Los Alamos

Statistical properties for patch potentials: k)= Vo) = Vo Vi) = 0;

(VikVie) = Cri 6%(k — K');
(VaxVaxr) = Cax 6%(k — k'),

Averaging the interaction energy over different (

- € d?k ~ysinh(2vyd)
realizations of the stochastic patches, we get B

16 J/ (27)2 sinh? (vd)

U

PP

[C1x + Ca.i

In the limit of large distances (kd > 1), this expression has an asymptotic behavior

independent of distance (self-energy of each plate).We remove the potential energy at
infinite separation, to get the electrostatic interaction energy due to patch effects

~ 321

00 k2 —kd
(Ui f dk ———— [Cyu + Cas]
0

sinh (kd)
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Patch force in sphere-plane

Alamos

Sphere-plane geometry:

To compute the patch effect in the sphere-plane
configuration we use PFA for the curvature effect

(d < R) but leave kd arbitrary |
V3V (z,y,2z) =0

k2e—kd

R o0
F,,(d) = 2rR(U,,(d)) = 6;]_6 /0 dk T [C1ss + Ca i Vi(z =0) =Vi(x,y)

Different models to describe surface potential fluctuations:

g Cl,k — C2,k: — ‘/02 for kmin <k< kmax 9 R(l) = { “)“- :“I ; /t'
| (0 ) 1 el A, s
: dwegV2 R [Fm=  L2e—kd . o Ji (w)
‘sp = = = T — sp = 2TE e
Eor k2 . — k2. /,, “" sinh(kd) Far cof /” au u c2ud/X _ |
V2
In the limit of large patches (kd < 1): Fop(d) = meg R 258

d
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Ge exp: patch fit at large distance .o aamos

We fit the data for the residual force at the minimizing potential with a
force of electric origin, for distances d > 5um (negligible Casimir)

v

Vin(d) + V1] + V2,

el _
F2(d) = Fo + meg R ¥
B LI I 1 1 1 1 1 LI l A
S B — J—
U | | Fo=(-11+2)x 10712 N
2 F —— Averaged experimental data |
S 1000 ——- Residual electrostatic force ] Vl _ (_34 s 3) mV
5 o a
> i a
E 500— 3 3 s ol ‘/vrms — (6 :l: 2) mv
= e :“‘::L"“éq: LTET R I COE i : g 2 _
0k . PEIR "—*Ii"—f“f”“ 1 - Xo = 1.9
10° 10° 107

Distance (m)
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Ge exp: patch fit at large distance . (o atamos

We fit the data for the residual force at the minimizing potential with a
force of electric origin, for distances d > 5um (negligible Casimir)

Vin(d) + V1] + V2,

el _
F>(d) = Fy + meoR 7
— l I
i B — R
1500 - | Fo=(-11£2)x 107" N
2 I —— Averaged experimental data |
S 1000 ——- Residual electrostatic force - Vi = (_34 + 3) mV
= i :
3 i :
E 5001 G ~ Vims = (6 £2) mV
of TR gy b= 15
10" 10” 10

Distance (m)

Friday, March 9, 12




A

Material properties of Ge Lok Alamos

* intrinsic semiconductor,among the purest materials available
» small density of free carriers (electrons and holes)
* conductivity, thermal, and optical properties are well tabulated

Bare permittivity of intrinsic Ge
(not including contributions from free carriers)

1¢ \
14}
\
\

Sellmeier-type form

€(1Q)

2 EO_Eoo

TE(E) = o t W 5=\

y & +wg \

10" & X' l A lr
C (rad/sec)
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Ge reflection amplitudes ok

We need to compute the reflection amplitudes 7y ;(w) for a vacuum-Ge
interphase. Depending on the model used to describe the optical and
conductivity properties of Ge we get different reflection amplitudes.

3k Ideal dielectric model: No contribution from free carriers. Only the bare permittivity
is taken into account. Reflection amplitudes are the usual Fresnel coefficients.

T ;) VK2 +€(i6)E2 /2 —€(i&) k2 + £2/c? TTE(if):\/k2+€ £)E2/c2 — \Jk? +£2/c2
VE2 +E(i€)€2]c2 +(i€)\/k2 + €2/ 2 ) VEEe(i6)E2)2 + /K2 + €2/

3k Ideal dielectric + Drude conductivity model: An ac Drude conductivity term
is added to the bare permittivity.

P— 4o (i) o(¢§) = oo/(1 4+ &)
(i8) = elie) + § oo = e*noT/me ~ 1/(43 Q cm)

Same Fresnel coefficients with the substitution €(¢£) — €(i&)
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Ge experiment: patches+Casimir .o aamo

SEILVE ST Y

il
1500 - -
2 | —— Averaged experimental data
= 1000~ ——~ Residual electrostatic force -
W | :
f;_) Residual force at
C o e -
(L minima of parabolas
| "—‘}-—f- . -’ -+ 1
6 5 4
10 10” 10

Distance (m)
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Ge experiment: patches+Casimir . 1o aamos

—— Averaged experimental data

——~ Residual electrostatic force -

Residual force at
minima of parabolas

Force (pN)

. 10~ 10
Distance (m)
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Ge experiment: patches+Casimir

pal
» Los Alamos

— —T—TTT . — T
1500 - -
2 | —— Averaged experimental data
£ 1000 ——~ Residual electrostatic force -
§ L Residual force at
2 00 | minima of parabolas ¥
of . T

10" . 10° 10
Distance (m)

After subtraction of the electrostatic force residual F&(d) = F, + meoR

[Vin(d) + V1]? + Vi3

d
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Ge experiment: patches+Casimir . 1o aamos

1500 — -
2 | —— Averaged experimental data d
S 1000 = ——~ Residual electrostatic force -
L I , i
R Residual force at ;
500+~ .. -
2 ’00_ minima of parabolas i
= v:,: ! . [ N
0- Wik
= 1 1 L1 1 I 1 1 1 1 L1 1 S I. 1 1 1 L1 14

6 5 4
10 10 10

Distance (m)
(Vi (d) + V1]* + V2

After subtraction of the electrostatic force residual F&(d) = F, + meoR

d
- "‘ 1 Ll 1 1 ] T L R ] I | 1 | ] 1 -
“" . »
o Ideal dielectric |
— 600 TP Ideal dielectric+Drude conductivity corrections
: I i | . 1
%_ L »'{1 Quasi-static screening model 1 For d< 5,um
~ 400 - -~ Charge drift model b 2
Error bars: S - A% W . . Xo ~ 1
= A Experimental data with
. o & 2001 residual electrostatic force subtracted o for all the
3% statistical - :k-&n 1 theoretical models
uncertainties i % !
o . () T h“*LJ-Q'-L.‘:_—J:‘;Jx.&_ Nl - S~ R ST
10% ﬁttlng T I 1 1 ¥ ) A E 2 T Tl LU B sl |
. 6 -5 4
uncertainties from 10 10 10
electrostatic analysis Distance (m)
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Remarks on the Ge experiment . io:aamos

@ Found a distance-dependent minimizing potential, due to large-scale variations
in the contact potential along the surface of the plates. It results in a relatively
large residual force of electrostatic origin o [Vy,,(d) + V1]°/d

@ Found another residual force of electrostatic origin, probably due to
potential patches on the surfaces that,for d < A < R,is & V2 /d

Q@ After subtraction of these two electrostatic residuals, we got very good
agreement with a Casimir force residual. However, we do not have enough
accuracy to distinguish between the different theoretical models.
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Casimir force with Au plates  .icsalamos

500 4

400 -
300

200

Force x separation? (pN x um?)

o
o

1

-
) e -

2 3 4 5 6 78
Plate separation (um)

—t —

0.7
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k(d),Vim(d),, and So(d) - Los Alamos

@ From the parabola curvature one obtains the absolute distance

meoR /3 B=(1.2740.04) x 107" N/V 3

-~
- O
L.

k(d) =

'—~“~“ﬂﬂ-& -
M | : 1 L

d d= (1() — drel (b)

N -

bAoouia & o9

0.36 0.39 0.42 0.45

Relative Distance (mm)

@ From the parabola minimum one obtains the minimizing potential

Our Au data shows a distance-independent minimizing potential V,, = 20mV ,
with variations of 0.2 mV in the 0.7-7.0 um range.

@ From So(d) one obtains the residual force F;.(d)
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Au experiment: force residuals . icsaiamos

800 "-‘\‘1

Drude model, T=300K

\
7004 \

E sood \ Plasma model, T=300K
P Drude model, T=0K
§ 1 \¥= Plasma model, T=0K
w 4007 =
§ o
x Bm—
g
2 2004 _
lm— = - x

2 3 4 5 6 78
Plate separation (Um)

Solid lines correspond to predictions from Lifshitz theory (with no
roughness correction) and Drude-like permittivity with parameters

07

wp = 7.54eV v = 0.051eV (best fit to Au optical data by Palik)

In our experiment, these force residuals are too large to be explained just
by the Casimir-Lifshitz force between Au plates.
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Extracting the patch force i e
2
Fr. — FCasimir = WEOR‘/}mS/d
’é 1504 RN HEREEN Drude T=300K
5 [ == > V= (544 0.1)mV
: MIBEREUNROE SUSIRES o = 1.04
8 I The other three models do
& LI o B ® DrudeT = 300K - . ..
.................. ® phmaT = 300K not fit this description
X RS S ® DrudeT = 0
& ‘ { Ll ® plmaT = 0. . 5
5 TS S - — 1/d ekctiodtatic fit Plasma T=300K: X;oq = 32
0 ———
=0 1 2 3 1 5 6 71 8 Drude T=0K:  Xpoq = 23
plate ssparaton. (um ) Plasma T=0K: X?ed = 43
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The thermal Casimir force

g

Alamos

300 -

Force x separation? (pN x pm?)

gray band: theo. uncertainty < 3%

/

w, = 6.85 — 9.0 eV
~ = 0.02 — 0.061 eV

X?ed =1.04

) e -

—

0.7

—_——

2 3 4 5 6 7
Plate separation (um)

Thermal Casimir force

{(3)RkpT
8

(large separations)

PF  (d) — — 97 pN pm?
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Remarks on the Au experiment . ic:aiamos

Q@ Observation of the thermal Casimir force.

- modeled patch contribution

- modeled Casimir contribution

Q@ Our measurement and analysis indicate that the Drude model to describe
Casimir interactions in metallic plates is correct.
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Global remarks

Q@ Other experiments seem to be compatible with plasma model

400
500}
600}
-700%
800}
900t

1000}

-1100

Pc(mPa)
o 9 b h A b

165 170 175 180 185 190 195 200 600 620 640 660 680 700 720 740

z,,, (nm)

E.g.: Decca group

Q@ Better modeling of patches is needed

PRA 85,012504 (2012) [Ryan Behunin, next week]

Q@ Measurements of patches are needed
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NSF Pan American Advanced Study Institute (PASI)
School/Workshop in October 2012 on

Frontiers in Casimir Physics

LOCATION:
Ushuaia, Argentina

Organizers: R. Decca, DD, R. Esquivel-Sirvent, P. Maia Neto, D. Mazzitelli, and H. Pastoriza
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